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We explore the use of feed forward artificial neural networks for
determining rotational correlation times from slow motional ni-
troxide electron spin resonance spectra. This approach is rapid
and potentially eliminates the need for traditional iterative fitting
procedures. Two networks are examined: the radial basis network
and the multilayer perceptron. Although the radial basis network
trains rapidly and performs well on simulated spectra, it is less
satisfactory when applied to experimental spectra. In contrast, the
multilayer perceptron trains slowly but is excellent at extracting
correlation times from experimental spectra. In addition, the mul-
tilayer perceptron operates well in the presence of noise as long as
the signal-to-noise ratio is greater than approximately 200/1.
These findings suggest neural networks offer a promising ap-

eters from slow motional spectra remains a challenge. Tt
essential problem lies with the iterative approach one mu
employ when simulating spectra. Given an experimental spe
trum, one must first guess at a value for the correlation time (i
well as other parameters, including motional anisotropy, loc:
ordering, and sample heterogeneity) and then perform a sir
ulation. The result is compared to the experimental spectrur
If the agreement is not satisfactory, the input values are a
justed and another simulation is performed. This process
repeated until good overlap between the experimental at
simulated spectra is achieved.

Recently, Budilet al. developed a nonlinear least squares

proach for rapidly extracting correlation times without the need
for iterative simulations. © 1998 Academic Press

Key Words: neural networks; ESR; slow motional spectra; radial
basis network; multilayer perceptron; rotational correlation time.

approach to automate the procedure of fitting slow motion:
spectra §). They applied a “model trust region” modification
of the Levenberg—Marquardt algorithm and showed that con
plicated spectra could be successfully simulated using a cor
puter workstation. Nevertheless, their method still relies o
iteration.

The difference in effort required for a noniterative approact

Nitroxide spin labels, in conjunction with electron spirfUch as that used for analyzing fast motional spectra, and t
resonance (ESR), serve as probes for exploring dynamics!tﬁ{at've approach _reqwred fqr slow motional spectra is strik
nucleic acids, peptides and proteiis-9. The ESR lineshape iN9- It would be _qwte_ helpful if a method cou_ld be developec
is often used to determine the rotational correlation timg ¢f that used a noniterative approach for analyzing slow motion:
the nitroxide, thereby revealing motion at the label site. Whépectra. Toward this goal we explore the use of artificial neur
7 is less than approximately 1 ns, ESR spectra are characRgtWworks 7). Neural networks have emerged as remarkabl
ized by three motionally narrowed hyperfine lines, antpols for patterrl regognltlon in scientific appllcatlons. They
straightforward lineshape measurement gives accurate val{ld¥e been applied with good success to spectroscopic proble
for the correlation time. However, wheg is between 1 ns and in huclear magnetic resonané@-(10, circular dichroism 11—
100 ns—the so-called slow motional regime—lineshape ana®): and infrared spectroscopg4). _
ysis is substantially more complicated)( The correlation  Artificial neural networks were inspired by research into the
times of most macromolecules fall within this regime andtérplay that takes place among networks of real biologice
consequently enormous effort has been directed toward &@urons. In an artificial neural network, the synaptic conne
tracting dynamic information from slow motional spectra. tions between neurons are represented by numerical weigk

Leading efforts in this field have come from Freed anyhich measure the strength of a connection, and a trans
co-workers §) (see also Chapter 3 in Ref). Throughout the function that emulates the firing of the neuron. Training <
1970s and 1980s they developed and refined slow motioR&fWork involves establishing a set of numerical weights th
simulation techniques based on the stochastic Liouville equiccessfully connect a training input with a desired outpu

tion. Despite their great success, determining dynamic paraf@ce trained, an artificial neural network can be an effectiv
tool for recognizing and extracting key features from previ

1To whom correspondence should be addressed. Fax: (408) 459-293§Sly unseen inpgt. o
E-mail: glennm@hydrogen.ucsc.edu In spectroscopic applications, neural networks have bee
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nodes in the hidden layer is then passed as a vector to the sin
node output layer. Following comparison to the output layer’
Neural weight vector, the resulting scalar is passed through a line
’ Network Tr transfer function to yield a value fars. Four features distin-
guish the RB network from the MLP as implemented here: (1
the method for comparing input and weight vectors, (2) th
_ _ _ choice of transfer function employed at each node in the hidde
FIG. 1. An overview of the problem. Given an experimental ESR speci-ayer (3) the method for choosing the number of nodes in th
trum, what is the rotational correlation timg? The proposal is that the neuralh.dd ’ | d (4) th d df .. h
network can rapidly predict the; without the need for iteration. idden layer, and (4) t e proce _ure used for training t
network. We now summarize details of each network.
We begin by describing the MLP. In this network, the vecto

used to identify discrete features such as subspectra arigiiger product is used to compare the input vector with th
from molecular components in a mixture or spectral contrib¥eight vector of each node in the hidden layer. At each noc
tions associated with particular molecular conformations. Farconstant biab is added to the resulting scalar and the valu
ESR spectra, the application is somewhat different. Nitroxid® then passed through a hyperbolic tangent transfer functio
spectra vary continuously as a function of correlation time.

They are not composed of canonical subspectra and therefore O, =f(W; I +b), [1]
present a new challenge for using neural networks in spectros-

copy. A successful neural network will be required to interp%hereoi is the output of théth node in the hidden layet,is
late among a finite set of spectra. We explore the use @ input vector (a particular spectruridy, is the weight vector
multilayer feed forward neural networks, which are among thgy that node, and is the hyperbolic tangent. Each node
simplest of the various network schemes. The aim is to be a@%uron) in the hidden layer will give positive output (fire) as
to feed a spectrum to a neural network and obtginvithout long asW, - | + b > 0. The resulting vecto® emerging from
iteration. This procedure is shown schematically in Fig. 1. the hidden layer is passed to the single-node output layer. T
We examined two particular types of network architeGyumper of nodes in the hidden layer is treated as an empirical
tures—radial basis (RB) networks and multilayer perceptrogjustable parameter. Networks with a small number of nods
(MLP)—for their ability to extract isotropic correlation '[imesmay not successfully train, but in contrast, networks with tog
from nitroxide slow motional spectraz), Our experiments many nodes may require excessively long training perioc
suggest that the RB network trains very rapidly (several migng/or give spurious results. Training uses a set of know
utes on a personal computer) but is overly sensitive to Smallectra and corresponding correlation times along with nol
spectral distortions. In contrast, the MLP (which is often callgghear |east squares fitting (termed back propagation).R'he
a back propagation network) trains slowly (approximately 28 matrix composed of known spectra is fed as input to th
min on a workstation and 10—-30 h on a personal computermatwork. A vector ofQ correlation times results, and this
see Methods) but does an excellent job of extracting accurgigtor is compared to the known correlation times. An error i

for the computation ofg from either network is much less than

a second. These results suggest that neural networks offer great
promise for the noniterative analysis of nitroxide ESR spectra. Input Hidden Output
Layer Layer Layer

THEORY OF NEURAL NETWORKS AS APPLIED
TO ESR SPECTRA

The “Neural Network” box in the flow diagram of Fig. 1
represents both the RB network and the MLP. Each network|
was trained on a series of simulated slow motional ESR spectr

Spectrum Matrix

(5) with correlation times ranging from 1 to 125 ns. The

general architecture for the MLP and RB network is shown in
Fig. 2. The networks are similar in that each consists of an
input layer, followed by a hidden layer of nodes (also called

neurons), followed by an output layer. The input layer is a
vector that consists oR points sampled from input ESR FIG. 2. Network architecture used in batch training mode. The spectrur
trix consists ofQ columns of simulated spectra, each representeR by

spectra. At e_ach node the mpu_t vector is compared to a We'érél points. These spectra are presented in batch to the network and the weic
vector resulting in a scalar that is then passed through a trangfehe s1 hidden layer nodes and the output node are adjusted to correct
function. The collection ofS1 scalars resulting from th&1 predict theQ values of7.

RXQ S1 1XQ
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calculated and knowmg's, and the weights and transfer func-
tion parameters are adjusted in an iterative fashion to improve
the fit. Each iteration over the entire set of training spectra is
termed an epoch.

The RB network differs in several ways from that for the
MLP. The Euclidean distance is used to comp#rgto | at
each node, and is a Gaussian function characterized by a
spread constant sc. Output at each node is thereby given as

O = F(IW; — 1]l % \log(2)/s0. (2]

Each node (neuron) will give output near unity (fire) as long
as|W; — 1|l X Vlog(2) is less than the radius sc. The spread
constant is an empirically adjusted parameter typically on the
order of unity. The number of nodes is determined dynamically
during the training process according to the algorithm of Chen
et al. (15). At the beginning of the training period there is one
node in the hidden layer (i.eS1 = 1). An error is computed
and if this error exceeds a predetermined limit, a new node is
added such that its weight vector is orthogonal to the weight
vector of the first node. Each epoch adds a new node at the
hidden layer, and Gram—-Schmidt orthogonalization is used to
maintain orthogonality among the set of hidden layer weight
vectors.

RESULTS AND DISCUSSION

We examined both the MLP and the RB network and com-
pared their respective abilities to predigt. The neural net-
works were trained on 15 simulated ESR spectra, six of which
are shown in Fig. 3, and were then applied to a testing set of
spectra not present in the training set (see Methods sectionjiG. 3. Six spectra out of the training set of 15 (total sweep width 100 G)
Subsequently, the networks were used with experimental daltawn with corresponding correlation timgs The spectra change dramati-
to determine whether they were robust in the presence of nofly between 1 and 50 ns.
and other experimental complications.

The training histories of each of the two different networkseach the prescribed sum squared error value (i.e., 0.01
are shown in Fig. 4. The training for the RB network wa8.001).
substantially more rapid than for the MLP. The number of Once training was complete (to a sum squared error of 0.(
nodes required in the hidden layer of the RB network was onfigr the 45 node MLP and 0.001 for the RB network), the testin
11 or 13 for error goals of 0.01 and 0.001, respectivelget was presented to the network and th's were compared
Typically, the network required 1-2 min to reach prescribettd the correct values. For each spectrum, the time required
sum squared error values. Several values of the spread constamputer, was 50 ms for the RB network and 200 ms for the
were examined and networks with values either significantLP. The correlation between the correct and output value
larger or smaller than unity failed to converge. In contrast twas used to quantify the goodness of fit. Figure 5a shows tl
the RB network, the MLP required substantially longer trainingetwork output plotted against the corregtvalues for both
times to reach the desired error goal (20 min on a workstatiomptworks. As a reference, the straight line along the pic
MLPs with hidden nodes of 35, 45, and 60 units were trainetlagonal (Output= ) is also shown. Clearly, both networks
to error goals of 0.01 and 0.001 (see Methods: Hidden Laygive excellent results. Residuals are shown in Fig. 5b. Scatt
Design for the MLP). The small “spikes” observable in théor the MLP is small, with the greatest error on the order of les
training history plot represent deviations where the suthan 0.3 ns forrg = 60 ns. The RB network performs even
squared error increased during a particular new epoch. Emgietter, with residuals that never exceed 0.1 ns.
ically we found that if the sum squared error did not drop The ability of the networks to prediet; from real experi-
below 1 within 1200 epochs, the training session would fail tmental data is the true test of their validity. Experimenta
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inhomogeneous broadening or inadequacy of the assumption

o a ) isotropic motion.
° 3 When it comes to experimental spectra, the two network
2 10 . .
= o perform differently. It has been asserted that an RB network
o o as capable as any particular MLP) (This is certainly true in
o 10 580 this case when the test spectra are generated from the simt
S ¢ 2 tion program. When applied to the testing set, the performan
T, - ° . ) .
n 10 o of the RB is excellent. However, experimental spectra contal
£ ® 5 additional details that may not be captured with a simulatio
3 10 o program. Such details include experimental noise, imperfe
- knowledge of the magnetic tensors, and additional inhomog
10 , , ‘ ‘ J , , neous broadening. In the presence of such distortions, it a
2 4 6 8 10 12 14 pears that the RB network is less forgiving than the MLP. RE
Epoch networks are known to be effective if there are enough nods
to ensure a close match of input to at least one of the weig
vectors. Perhaps the addition of noise (see next paragraph)
systematic features of the experimental spectra not present
10 the simulations results in a lack of proper match with any of th
b ) nodes in the trained network. In any case, it appears that t
H MLP is very robust and quite capable of dealing with bott
&
o
o 100
g = [a)
=2
o £
b 80 |
_§, """""""""""""""""""""""""""""""""""" é- 60 |-
@ é
v 40 |
. | 3
20 40 60 80 100 120 -_g
® 20 |
Epoch (thousands) a
' FIG. 4. A plot of the sum squared. error as a function of the training cycle 0 0 2I 0 4‘ 0 6’0 8I 0 1 60
in epochs. The RB network is shown in (a) for sum squared error goals of 0.01 T
(©) and 0.00107). The MLP is shown in (b) with 35 nodeS), 45 nodesI), R (ns)
and 60 nodes/) in the hidden layer.
0.4 -
_ _ b)
spectra, from the spin label probe CTPO in 75% v/v glycerol/ 0.3 | o
water, were obtained and processed according to procedures 4 0.2 |
outlined in the Methods section. After network determination = 0.1 | .
of 7z from each experimental spectrum, the resulting correla- - o o 5 o
. . . . . [ J =S [
tion time was used to create a simulation for comparison to that _-g i B8 © 0% o °
spectrum. The results are shown in Fig. 6. Results forthe RB~ §-0-1} °
network shown in Fig. 6a indicate that this network does a €. 0.2]
reasonable job for long correlation times, but the results are -0.3L
less satisfactory for short correlation times. It appears that the 0.4 ‘ [ . 7
RB network emphasizes mainly the large-amplitude features in o 20 40 60 80 100
the middle of each spectrum. Ta (ns)

Figure 6b demonstrates that the MLP is able to predict

throughout the slow motional regime. While the RB network FIG. 5.

fails at shorter correlation times, the MLP clearly does ve

(a) Predicted rotational correlation time (from the testing set) vs

the known correlation time determined by the both RB netwarlk &nd the
MLp (O). The correlation times were randomly chosen between 1 and 100 1

well. There are some discrepancies between experimental @iGksting the network. The line represents the ideal goal of outpirtput.
calculated spectra at longeg, but this may simply be due to The residuals are shown in (b).
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a)  RB Network b) MLP

SN of 200/1 is also reasonably well tolerated, and for this cas

the average relative error is 16%. However, the largest relati

(ns)

FIG. 6. Overlays of simulated spectra (dashed lines) with experimental
CTPO spectra (solid lines) for (a) the RB network and (b) the MLP. Correla-
tion times determined by the networks and temperatures are indicated by each
spectrum. The MLP is superior at extractingin the presence of noise and
experimental distortions not present in the training set.

Predicted Output

random and systematic differences between the ideal training
spectra and experimental spectra.

The signal-to-noiseN) ratio for the experimental spectra
in Fig. 6 is approximately 250/1, which is typical for high
quality ESR spectra. Given the success of the MLP, it is of
interest to explore how this network tolerates the presence of
noise. Random noise (Gaussian white noise) was added to the
testing set in varying proportions to gi#N ratios of 100/1,
200/1, and 400/1. These spectra were presented to MLPs with
35, 45, and 60 nodes in the hidden layer, with each trained to
sum squared errors of 0.01 and 0.001, as discussed earlier (see
also Methods: Hidden Layer Design for the MLP). As was
found for the experimental spectra, 45 nodes gave the most
reliable output, and the results are shown in Fig. 7. Figure 7a
shows the direct output, and Fig. 7b shows the relative % errof
(defined as 10X (Tg out — Tr i)/ TR in)- SN Of 400/1 is well

relative error (%)

IG. 7.
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error from this noisy testing set is 32%, which is substantia
Finally, SN of 100/1 begins to generate large errors and th
output is clearly not a reliable indicator of the trag We did
find that training the MLP to a sum squared error of 0.001 gav
a slight improvement in performance for the 100/1 data, bt
still the RMS error int; was 36%.
Although detection of motional anisotropy was not part o
this study, it may certainly be included. The advantages
using a neural network to obtain correlation times may also
used in conjunction with a least squares routine if greate
precision is requiredd). That is, since the neural network can
rapidly achieve a good solution, the neural network output ca
seed a least squares routine which can then refine the
Having a MLP serve as a “front end” to a more rigorous
nonlinear least squares approach may greatly speed up cc
putation of correlation times and other desired motional an
ordering parameters.
In summary, the neural network approach is an effectiv
method for rapidly obtaining rotational correlation times from

40 60 80
Tg (ns)

100

1 Il |

20

40 60 80
Tg (ns)

|
100

(a) Predicted rotational correlation time from noisy spectra. Re

sults are from the MLP network with 45 hidden nodes trained to an error go:
of 0.01. Noisy input spectra were produced using Gaussian white noise a

tolerated with an average (RMS) relative error of 9%. Int€kpectra from the testing set to produce signal-to-noise ratios of 10T)1 (

estingly, the error does not appear to depend on the valge 0f200/1 ©) and 400/1 @). The relative error is shown in (b).
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ESR spectra. In particular, the MLP works well with experinetwork when run on the personal computer. For the MLF
mental spectra and can tolerate noise as long aS'Meatio is training required 20 min on the workstation and from 10 ftc
greater than approximately 200/1. This computational apd h on the personal computer to reach the required su
proach has the advantage that, once the network is trainsgared error.

correlation times can be extracted almost instantaneously fronThe testing set refers to simulated spectra with known co
experimental spectra. The approach outlined here shouddation times that are not part of the training set. Thes of
readily generalize to more complicated cases of anisotropie testing set were chosen using a random number genere

motion and molecular ordering. uniformly distributed from 1 to 100 ns. In all, 20 simulated
spectra were used to test the generalization ability of eac
METHODS network.
Training Set Construction Experimental ESR Spectra

ESR spectra were simulated using the slow motional pro-Experimental data were obtained from the spin probe 3-ca
gram of Schneider and Free8)(Values chosen for the mag-bamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (CTPO) in a
netic tensors werg,, = 2.0086,g,, = 2.0066,9,, = 2.0022, 75% v/v glycerol/water mixture. The experimental spectr:
A = 6.23,A,, = 6.23,A,, = 35.7. (Note that these are thewere acquired over 100 G at a series of temperatures from 2
same values used in Todd and Millhaus6)( with the ex- to 273 K on a Bruker ESP 380 spectrometer with a modulatio
ception ofg,, which was adjusted to obtain good agreemeﬁ(ﬂp”tude of 0.25 G. Normalization was applied as describe
between slow motional simulations and rigid limit experimerreviously and spectra were adjusted in the field direction s
tal spectra.) Fifteen spectra were generated with isotropic ctat the characteristic zero crossing in the middle of eac
relation times ranging from 1 to 125 ns. (Training with fewegpectrum was placed in the middle of the input vector.
than 15 spectra resulted in networks that did not give satisfac-
tory results when applied to the set of test spectra.) Of the Itiflden Layer Design for the MLP

spectra, 12 hadg < 50 ns since spectra within this range are g discussed earlier, a single hidden layer was used for tt
extremely sensitive to correlation time. Simulated spectra fRf p network. A linear output layer was used with only one
training and testing were spline fit and resampled at 23%tput unit corresponding to the rotational correlation tire

equally spaced points along the field axis of 100 G. A matri¢he number of hidden units was varied and then networ
of spectra (Fig. 3) was constructed for batch mode trainingformance was tested. The actual numbers of hidden noc
where all of the training vectors are presented simultaneouslseq were 35. 45 and 60. The network did not reach tr
Since spectra are obtained in an optimal experimental Settingré&uired sum squared error goal of 0.01 for 30 hidden nodes
first derivatives, we decided to do all training and testing Withss The network with 45 nodes demonstrated the best abili
spectra in this representation. However, we also found (@ generalize and yielded the best correlation between pr
not reported) that the methods reported here applied well dted and known values (see Results and Discussion). T

absorption spectra. _  network with 45 nodes was optimized to reach a final sur
All spectra in the training and testing sets were normallz%uared error of 0.001.

before input to the networks. Two normalization schemes were

tried. In the f|rs§ scheme the §pectra were S|Imply adjusted S0 ACKNOWLEDGMENTS

that the absorption spectrum integral was unity. Although this

approach worked well for the MLP, we found that the RB The authors thank Dr. Kim Bolin for helpful comments on the manuscript
network did not train successfully. Because spectra are fedTas work was supported by grants from the National Science Foundatic
tion, and this strategy worked well for both networks. GLM and GM16396 to GVM).
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