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We explore the use of feed forward artificial neural networks for
determining rotational correlation times from slow motional ni-
troxide electron spin resonance spectra. This approach is rapid
and potentially eliminates the need for traditional iterative fitting
procedures. Two networks are examined: the radial basis network
and the multilayer perceptron. Although the radial basis network
trains rapidly and performs well on simulated spectra, it is less
satisfactory when applied to experimental spectra. In contrast, the
multilayer perceptron trains slowly but is excellent at extracting
correlation times from experimental spectra. In addition, the mul-
tilayer perceptron operates well in the presence of noise as long as
the signal-to-noise ratio is greater than approximately 200/1.
These findings suggest neural networks offer a promising ap-
proach for rapidly extracting correlation times without the need
for iterative simulations. © 1998 Academic Press
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INTRODUCTION

Nitroxide spin labels, in conjunction with electron spin
resonance (ESR), serve as probes for exploring dynamics in
nucleic acids, peptides and proteins (1–3). The ESR lineshape
is often used to determine the rotational correlation time (tR) of
the nitroxide, thereby revealing motion at the label site. When
tR is less than approximately 1 ns, ESR spectra are character-
ized by three motionally narrowed hyperfine lines, and
straightforward lineshape measurement gives accurate values
for the correlation time. However, whentR is between 1 ns and
100 ns—the so-called slow motional regime—lineshape anal-
ysis is substantially more complicated (4). The correlation
times of most macromolecules fall within this regime and
consequently enormous effort has been directed toward ex-
tracting dynamic information from slow motional spectra.

Leading efforts in this field have come from Freed and
co-workers (5) (see also Chapter 3 in Ref.1). Throughout the
1970s and 1980s they developed and refined slow motional
simulation techniques based on the stochastic Liouville equa-
tion. Despite their great success, determining dynamic param-

eters from slow motional spectra remains a challenge. The
essential problem lies with the iterative approach one must
employ when simulating spectra. Given an experimental spec-
trum, one must first guess at a value for the correlation time (as
well as other parameters, including motional anisotropy, local
ordering, and sample heterogeneity) and then perform a sim-
ulation. The result is compared to the experimental spectrum.
If the agreement is not satisfactory, the input values are ad-
justed and another simulation is performed. This process is
repeated until good overlap between the experimental and
simulated spectra is achieved.

Recently, Budilet al. developed a nonlinear least squares
approach to automate the procedure of fitting slow motional
spectra (6). They applied a “model trust region” modification
of the Levenberg–Marquardt algorithm and showed that com-
plicated spectra could be successfully simulated using a com-
puter workstation. Nevertheless, their method still relies on
iteration.

The difference in effort required for a noniterative approach,
such as that used for analyzing fast motional spectra, and the
iterative approach required for slow motional spectra is strik-
ing. It would be quite helpful if a method could be developed
that used a noniterative approach for analyzing slow motional
spectra. Toward this goal we explore the use of artificial neural
networks (7). Neural networks have emerged as remarkable
tools for pattern recognition in scientific applications. They
have been applied with good success to spectroscopic problems
in nuclear magnetic resonance (8–10), circular dichroism (11–
13), and infrared spectroscopy (14).

Artificial neural networks were inspired by research into the
interplay that takes place among networks of real biological
neurons. In an artificial neural network, the synaptic connec-
tions between neurons are represented by numerical weights,
which measure the strength of a connection, and a transfer
function that emulates the firing of the neuron. Training a
network involves establishing a set of numerical weights that
successfully connect a training input with a desired output.
Once trained, an artificial neural network can be an effective
tool for recognizing and extracting key features from previ-
ously unseen input.

In spectroscopic applications, neural networks have been
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used to identify discrete features such as subspectra arising
from molecular components in a mixture or spectral contribu-
tions associated with particular molecular conformations. For
ESR spectra, the application is somewhat different. Nitroxide
spectra vary continuously as a function of correlation time.
They are not composed of canonical subspectra and therefore
present a new challenge for using neural networks in spectros-
copy. A successful neural network will be required to interpo-
late among a finite set of spectra. We explore the use of
multilayer feed forward neural networks, which are among the
simplest of the various network schemes. The aim is to be able
to feed a spectrum to a neural network and obtaintR without
iteration. This procedure is shown schematically in Fig. 1.

We examined two particular types of network architec-
tures—radial basis (RB) networks and multilayer perceptrons
(MLP)—for their ability to extract isotropic correlation times
from nitroxide slow motional spectra (7). Our experiments
suggest that the RB network trains very rapidly (several min-
utes on a personal computer) but is overly sensitive to small
spectral distortions. In contrast, the MLP (which is often called
a back propagation network) trains slowly (approximately 20
min on a workstation and 10–30 h on a personal computer—
see Methods) but does an excellent job of extracting accurate
correlation times from experimental spectra. The time required
for the computation oftR from either network is much less than
a second. These results suggest that neural networks offer great
promise for the noniterative analysis of nitroxide ESR spectra.

THEORY OF NEURAL NETWORKS AS APPLIED
TO ESR SPECTRA

The “Neural Network” box in the flow diagram of Fig. 1
represents both the RB network and the MLP. Each network
was trained on a series of simulated slow motional ESR spectra
(5) with correlation times ranging from 1 to 125 ns. The
general architecture for the MLP and RB network is shown in
Fig. 2. The networks are similar in that each consists of an
input layer, followed by a hidden layer of nodes (also called
neurons), followed by an output layer. The input layer is a
vector that consists ofR points sampled from input ESR
spectra. At each node the input vector is compared to a weight
vector resulting in a scalar that is then passed through a transfer
function. The collection ofS1 scalars resulting from theS1

nodes in the hidden layer is then passed as a vector to the single
node output layer. Following comparison to the output layer’s
weight vector, the resulting scalar is passed through a linear
transfer function to yield a value fortR. Four features distin-
guish the RB network from the MLP as implemented here: (1)
the method for comparing input and weight vectors, (2) the
choice of transfer function employed at each node in the hidden
layer, (3) the method for choosing the number of nodes in the
hidden layer, and (4) the procedure used for training the
network. We now summarize details of each network.

We begin by describing the MLP. In this network, the vector
inner product is used to compare the input vector with the
weight vector of each node in the hidden layer. At each node
a constant biasb is added to the resulting scalar and the value
is then passed through a hyperbolic tangent transfer function:

Oi 5 f ~W i z I 1 b!, [1]

whereOi is the output of theith node in the hidden layer,I is
the input vector (a particular spectrum),W i is the weight vector
for that node, andf is the hyperbolic tangent. Each node
(neuron) in the hidden layer will give positive output (fire) as
long asW i z I 1 b . 0. The resulting vectorO emerging from
the hidden layer is passed to the single-node output layer. The
number of nodes in the hidden layer is treated as an empirically
adjustable parameter. Networks with a small number of nodes
may not successfully train, but in contrast, networks with too
many nodes may require excessively long training periods
and/or give spurious results. Training uses a set of known
spectra and corresponding correlation times along with non-
linear least squares fitting (termed back propagation). TheR 3
Q matrix composed of known spectra is fed as input to the
network. A vector ofQ correlation times results, and this
vector is compared to the known correlation times. An error is
computed according to the sum squared difference between the

FIG. 2. Network architecture used in batch training mode. The spectrum
matrix consists ofQ columns of simulated spectra, each represented byR 5
255 points. These spectra are presented in batch to the network and the weights
of the S1 hidden layer nodes and the output node are adjusted to correctly
predict theQ values oftR.

FIG. 1. An overview of the problem. Given an experimental ESR spec-
trum, what is the rotational correlation timetR? The proposal is that the neural
network can rapidly predict thetR without the need for iteration.
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calculated and knowntR’s, and the weights and transfer func-
tion parameters are adjusted in an iterative fashion to improve
the fit. Each iteration over the entire set of training spectra is
termed an epoch.

The RB network differs in several ways from that for the
MLP. The Euclidean distance is used to compareW i to I at
each node, andf is a Gaussian function characterized by a
spread constant sc. Output at each node is thereby given as

Oi 5 f ~\W i 2 I \ 3 Îlog~2!/sc!. [2]

Each node (neuron) will give output near unity (fire) as long
as\W i 2 I \ 3 =log(2) is less than the radius sc. The spread
constant is an empirically adjusted parameter typically on the
order of unity. The number of nodes is determined dynamically
during the training process according to the algorithm of Chen
et al. (15). At the beginning of the training period there is one
node in the hidden layer (i.e.,S15 1). An error is computed
and if this error exceeds a predetermined limit, a new node is
added such that its weight vector is orthogonal to the weight
vector of the first node. Each epoch adds a new node at the
hidden layer, and Gram–Schmidt orthogonalization is used to
maintain orthogonality among the set of hidden layer weight
vectors.

RESULTS AND DISCUSSION

We examined both the MLP and the RB network and com-
pared their respective abilities to predicttR. The neural net-
works were trained on 15 simulated ESR spectra, six of which
are shown in Fig. 3, and were then applied to a testing set of
spectra not present in the training set (see Methods section).
Subsequently, the networks were used with experimental data
to determine whether they were robust in the presence of noise
and other experimental complications.

The training histories of each of the two different networks
are shown in Fig. 4. The training for the RB network was
substantially more rapid than for the MLP. The number of
nodes required in the hidden layer of the RB network was only
11 or 13 for error goals of 0.01 and 0.001, respectively.
Typically, the network required 1–2 min to reach prescribed
sum squared error values. Several values of the spread constant
were examined and networks with values either significantly
larger or smaller than unity failed to converge. In contrast to
the RB network, the MLP required substantially longer training
times to reach the desired error goal (20 min on a workstation).
MLPs with hidden nodes of 35, 45, and 60 units were trained
to error goals of 0.01 and 0.001 (see Methods: Hidden Layer
Design for the MLP). The small “spikes” observable in the
training history plot represent deviations where the sum
squared error increased during a particular new epoch. Empir-
ically we found that if the sum squared error did not drop
below 1 within 1200 epochs, the training session would fail to

reach the prescribed sum squared error value (i.e., 0.01 or
0.001).

Once training was complete (to a sum squared error of 0.01
for the 45 node MLP and 0.001 for the RB network), the testing
set was presented to the network and thetR’s were compared
to the correct values. For each spectrum, the time required to
computetR was 50 ms for the RB network and 200 ms for the
MLP. The correlation between the correct and output values
was used to quantify the goodness of fit. Figure 5a shows the
network output plotted against the correcttR values for both
networks. As a reference, the straight line along the plot
diagonal (Output5 tR) is also shown. Clearly, both networks
give excellent results. Residuals are shown in Fig. 5b. Scatter
for the MLP is small, with the greatest error on the order of less
than 0.3 ns fortR 5 60 ns. The RB network performs even
better, with residuals that never exceed 0.1 ns.

The ability of the networks to predicttR from real experi-
mental data is the true test of their validity. Experimental

FIG. 3. Six spectra out of the training set of 15 (total sweep width 100 G)
shown with corresponding correlation timestR. The spectra change dramati-
cally between 1 and 50 ns.
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spectra, from the spin label probe CTPO in 75% v/v glycerol/
water, were obtained and processed according to procedures
outlined in the Methods section. After network determination
of tR from each experimental spectrum, the resulting correla-
tion time was used to create a simulation for comparison to that
spectrum. The results are shown in Fig. 6. Results for the RB
network shown in Fig. 6a indicate that this network does a
reasonable job for long correlation times, but the results are
less satisfactory for short correlation times. It appears that the
RB network emphasizes mainly the large-amplitude features in
the middle of each spectrum.

Figure 6b demonstrates that the MLP is able to predicttR

throughout the slow motional regime. While the RB network
fails at shorter correlation times, the MLP clearly does very
well. There are some discrepancies between experimental and
calculated spectra at longertR, but this may simply be due to

inhomogeneous broadening or inadequacy of the assumption of
isotropic motion.

When it comes to experimental spectra, the two networks
perform differently. It has been asserted that an RB network is
as capable as any particular MLP (7). This is certainly true in
this case when the test spectra are generated from the simula-
tion program. When applied to the testing set, the performance
of the RB is excellent. However, experimental spectra contain
additional details that may not be captured with a simulation
program. Such details include experimental noise, imperfect
knowledge of the magnetic tensors, and additional inhomoge-
neous broadening. In the presence of such distortions, it ap-
pears that the RB network is less forgiving than the MLP. RB
networks are known to be effective if there are enough nodes
to ensure a close match of input to at least one of the weight
vectors. Perhaps the addition of noise (see next paragraph) or
systematic features of the experimental spectra not present in
the simulations results in a lack of proper match with any of the
nodes in the trained network. In any case, it appears that the
MLP is very robust and quite capable of dealing with both

FIG. 5. (a) Predicted rotational correlation time (from the testing set) vs
the known correlation time determined by the both RB network (h) and the
MLP (E). The correlation times were randomly chosen between 1 and 100 ns
for testing the network. The line represents the ideal goal of output5 input.
The residuals are shown in (b).

FIG. 4. A plot of the sum squared error as a function of the training cycle
in epochs. The RB network is shown in (a) for sum squared error goals of 0.01
({) and 0.001 (h). The MLP is shown in (b) with 35 nodes (E), 45 nodes (h),
and 60 nodes (‚) in the hidden layer.
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random and systematic differences between the ideal training
spectra and experimental spectra.

The signal-to-noise (S/N) ratio for the experimental spectra
in Fig. 6 is approximately 250/1, which is typical for high
quality ESR spectra. Given the success of the MLP, it is of
interest to explore how this network tolerates the presence of
noise. Random noise (Gaussian white noise) was added to the
testing set in varying proportions to giveS/N ratios of 100/1,
200/1, and 400/1. These spectra were presented to MLPs with
35, 45, and 60 nodes in the hidden layer, with each trained to
sum squared errors of 0.01 and 0.001, as discussed earlier (see
also Methods: Hidden Layer Design for the MLP). As was
found for the experimental spectra, 45 nodes gave the most
reliable output, and the results are shown in Fig. 7. Figure 7a
shows the direct output, and Fig. 7b shows the relative % error
(defined as 1003 (tR out 2 tR in)/tR in). S/N of 400/1 is well
tolerated with an average (RMS) relative error of 9%. Inter-
estingly, the error does not appear to depend on the value oftR.

S/N of 200/1 is also reasonably well tolerated, and for this case
the average relative error is 16%. However, the largest relative
error from this noisy testing set is 32%, which is substantial.
Finally, S/N of 100/1 begins to generate large errors and the
output is clearly not a reliable indicator of the truetR. We did
find that training the MLP to a sum squared error of 0.001 gave
a slight improvement in performance for the 100/1 data, but
still the RMS error intR was 36%.

Although detection of motional anisotropy was not part of
this study, it may certainly be included. The advantages of
using a neural network to obtain correlation times may also be
used in conjunction with a least squares routine if greater
precision is required (6). That is, since the neural network can
rapidly achieve a good solution, the neural network output can
seed a least squares routine which can then refine the fit.
Having a MLP serve as a “front end” to a more rigorous
nonlinear least squares approach may greatly speed up com-
putation of correlation times and other desired motional and
ordering parameters.

In summary, the neural network approach is an effective
method for rapidly obtaining rotational correlation times from

FIG. 7. (a) Predicted rotational correlation time from noisy spectra. Re-
sults are from the MLP network with 45 hidden nodes trained to an error goal
of 0.01. Noisy input spectra were produced using Gaussian white noise and
spectra from the testing set to produce signal-to-noise ratios of 100/1 (h),
200/1 (E) and 400/1 (F). The relative error is shown in (b).

FIG. 6. Overlays of simulated spectra (dashed lines) with experimental
CTPO spectra (solid lines) for (a) the RB network and (b) the MLP. Correla-
tion times determined by the networks and temperatures are indicated by each
spectrum. The MLP is superior at extractingtR in the presence of noise and
experimental distortions not present in the training set.
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ESR spectra. In particular, the MLP works well with experi-
mental spectra and can tolerate noise as long as theS/N ratio is
greater than approximately 200/1. This computational ap-
proach has the advantage that, once the network is trained,
correlation times can be extracted almost instantaneously from
experimental spectra. The approach outlined here should
readily generalize to more complicated cases of anisotropic
motion and molecular ordering.

METHODS

Training Set Construction

ESR spectra were simulated using the slow motional pro-
gram of Schneider and Freed (5). Values chosen for the mag-
netic tensors weregxx 5 2.0086,gyy 5 2.0066,gzz 5 2.0022,
Axx 5 6.23,Ayy 5 6.23,Azz 5 35.7. (Note that these are the
same values used in Todd and Millhauser (16), with the ex-
ception ofgzz, which was adjusted to obtain good agreement
between slow motional simulations and rigid limit experimen-
tal spectra.) Fifteen spectra were generated with isotropic cor-
relation times ranging from 1 to 125 ns. (Training with fewer
than 15 spectra resulted in networks that did not give satisfac-
tory results when applied to the set of test spectra.) Of the 15
spectra, 12 hadtR , 50 ns since spectra within this range are
extremely sensitive to correlation time. Simulated spectra for
training and testing were spline fit and resampled at 255
equally spaced points along the field axis of 100 G. A matrix
of spectra (Fig. 3) was constructed for batch mode training
where all of the training vectors are presented simultaneously.
Since spectra are obtained in an optimal experimental setting as
first derivatives, we decided to do all training and testing with
spectra in this representation. However, we also found (data
not reported) that the methods reported here applied well to
absorption spectra.

All spectra in the training and testing sets were normalized
before input to the networks. Two normalization schemes were
tried. In the first scheme the spectra were simply adjusted so
that the absorption spectrum integral was unity. Although this
approach worked well for the MLP, we found that the RB
network did not train successfully. Because spectra are fed as
vectors, our second approach used simple vector normaliza-
tion, and this strategy worked well for both networks.

Network Training

All training and testing was performed in the Matlab envi-
ronment with the aid of the Neural Network Toolbox (17) on
either a Sun Ultra 1 Sparc workstation or on a Power Macin-
tosh 7100/66 personal computer. For the RB network, the
routines SOLVERB and SIMURB were used for training and
inputting spectra, respectively. For the MLP, the routines used
were INITFF, TRAINBPX, and SIMUFF, respectively, for
initializing the weights and biases, training, and inputting spec-
tra. Training times were on the order of minutes for the RB

network when run on the personal computer. For the MLP,
training required 20 min on the workstation and from 10 to
30 h on the personal computer to reach the required sum
squared error.

The testing set refers to simulated spectra with known cor-
relation times that are not part of the training set. ThetR’s of
the testing set were chosen using a random number generator
uniformly distributed from 1 to 100 ns. In all, 20 simulated
spectra were used to test the generalization ability of each
network.

Experimental ESR Spectra

Experimental data were obtained from the spin probe 3-car-
bamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (CTPO) in a
75% v/v glycerol/water mixture. The experimental spectra
were acquired over 100 G at a series of temperatures from 243
to 273 K on a Bruker ESP 380 spectrometer with a modulation
amplitude of 0.25 G. Normalization was applied as described
previously and spectra were adjusted in the field direction so
that the characteristic zero crossing in the middle of each
spectrum was placed in the middle of the input vector.

Hidden Layer Design for the MLP

As discussed earlier, a single hidden layer was used for the
MLP network. A linear output layer was used with only one
output unit corresponding to the rotational correlation timetR.
The number of hidden units was varied and then network
performance was tested. The actual numbers of hidden nodes
used were 35, 45, and 60. The network did not reach the
required sum squared error goal of 0.01 for 30 hidden nodes or
less. The network with 45 nodes demonstrated the best ability
to generalize and yielded the best correlation between pre-
dicted and known values (see Results and Discussion). The
network with 45 nodes was optimized to reach a final sum
squared error of 0.001.

ACKNOWLEDGMENTS

The authors thank Dr. Kim Bolin for helpful comments on the manuscript.
This work was supported by grants from the National Science Foundation
(MCB9408284 to GLM) and the National Institutes of Health (GM46870 to
GLM and GM16396 to GVM).

REFERENCES

1. L. J. Berliner, “Spin Labeling: Theory and Applications,” Academic
Press, New York (1976).

2. G. I. Likhtenshtein, “Spin Labeling Methods in Molecular Biology,”
Wiley, New York (1976).

3. G. L. Millhauser, Selective placement of electron spin resonance
spin labels: New structural methods for peptides and proteins,
Trends Biochem. Sci. 17, 448–452 (1992).

4. G. L. Millhauser, W. R. Fiori, and S. M. Miick, Electron spin labels,
in “Methods in Enzymology” (K. Sauer, Ed.), Vol. 246, pp. 589–610,
Academic Press, New York (1995).

129NEURAL NETWORK ANALYSIS OF SLOW MOTIONAL SPECTRA



5. D. J. Schneider and J. H. Freed, Calculating slow motional mag-
netic resonance spectra: A user’s guide, in “Biological Magnetic
Resonance: Spin Labeling Theory and Applications” (L. J. Berliner
and J. Reuben, Eds.), Vol. 8, pp. 1–76, Plenum Press, New York
(1989).

6. D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, Nonlinear-least-
squares analysis of slow-motion EPR spectra in one and two
dimensions using a modified Levenberg–Marquardt algorithm,
J. Magn. Res. A 120, 155–189 (1996).

7. S. S. Haykin, “Neural Networks: A Comprehensive Foundation,”
Macmillan College Publishing, New York (1994).

8. J. U. Thomsen and B. Meyer, Pattern recognition of the H-1 NMR
spectra of sugar alditols using a neural network, J. Magn. Res. 84,
212–217 (1989).

9. J. P. Radomski, H. Vanhalbeek, and B. Meyer, Neural network-
based recognition of oligosaccharide H-1 NMR spectra, Nature:
Struct. Biol. 1, 217–218 (1994).

10. S. A. Corne, A. P. Johnson, and J. Fisher, An artificial neural
network for classifying cross peaks in 2-dimensional NMR spectra,
J. Magn. Res. 100, 256–266 (1992).

11. G. Bohm, R. Muhr, and R. Jaenicke, Quantitative analysis of protein

far UV circular dichroism spectra by neural networks, Protein En-
gineering 5, 191–195 (1992).

12. N. Sreerama and R. W. Woody, Protein secondary structure from
circular dichroism spectroscopy—combining variable selection
principle and cluster analysis with neural network, ridge regression
and self-consistent methods, J. Mol. Biol. 242, 497–507 (1994).

13. P. Pancoska, V. Janota, and T. A. Keiderling, Interconvertibility of
electronic and vibrational circular dichroism spectra of proteins—a
test of principle using neural network mapping, Appl. Spectrosc.
50, 658–668 (1996).

14. K. Tanabe, T. Tamura, and H. Uesaka, Neural network system for
the identification of infrared spectra, Appl. Spectrosc. 46, 807–810
(1992).

15. S. Chen, C. F. N. Cowan, and P. M. Grant, Orthogonal least
squares learning algorithm for radial basis function networks, IEEE
Trans. Neural Networks 2, 302–309 (1991).

16. A. P. Todd and G. L. Millhauser, ESR spectra reflect local and
global mobility in a short spin-labeled peptide throughout the a-he-
lix 3 coil transition, Biochemistry 30, 5515–5523 (1991).

17. H. Demuth and M. Beale, “User’s Guide: Neural Network Toolbox,”
The Mathworks, Inc., Natick, MA (1995).

130 MARTINEZ AND MILLHAUSER


